Generate Function
Functions that generate text, images, or other content using language models.
What is a Generate Function?
A generate function is a component that takes input (like a prompt or context) and produces output content using a language model or generative AI system. It’s the core mechanism for creating new content in AI applications.
Key Components
Input (Prompt)
- User query or instruction
- Context or background information
- System instructions
- Examples (few-shot learning)
Model
- Language Model (GPT, Claude, Llama, etc.)
- Image Generator (DALL-E, Stable Diffusion)
- Code Generator (Codex, CodeLlama)
Output
- Generated text
- Structured data (JSON, XML)
- Code snippets
- Creative content
Basic Structure
def generate(prompt, context=None, parameters=None):
"""
Generate content using a language model
Args:
prompt: User input or instruction
context: Additional context or background
parameters: Model parameters (temperature, max_tokens, etc.)
Returns:
Generated content as string
"""
full_prompt = build_prompt(prompt, context)
response = model.complete(full_prompt, **parameters)
return response.text
Parameters
Temperature
Controls randomness in generation:
- Low (0.0-0.3): Deterministic, focused
- Medium (0.4-0.7): Balanced
- High (0.8-1.0): Creative, diverse
Max Tokens
Maximum length of generated output
Top-p (Nucleus Sampling)
Probability threshold for token selection
- 0.9-0.95: Most common for balanced output
Stop Sequences
Tokens that signal end of generation
Example Usage
Simple Generation
from openai import OpenAI
client = OpenAI()
def generate(prompt, temperature=0.7, max_tokens=500):
response = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": prompt}],
temperature=temperature,
max_tokens=max_tokens
)
return response.choices[0].message.content
# Usage
result = generate("Explain quantum computing in simple terms")
Structured Generation
def generate_json(prompt, schema):
"""Generate structured JSON output"""
system_prompt = f"""Generate valid JSON matching this schema:
{schema}
Only return JSON, no other text."""
response = generate(
prompt=prompt,
system=system_prompt,
temperature=0.2 # Lower temp for structured output
)
return json.loads(response)
# Usage
schema = {"name": "string", "age": "number", "city": "string"}
result = generate_json("Create a person profile", schema)
Best Practices
Prompt Engineering
- Clear instructions
- Provide examples
- Specify format
- Set constraints
Error Handling
def safe_generate(prompt, max_retries=3):
for attempt in range(max_retries):
try:
return generate(prompt)
except Exception as e:
if attempt == max_retries - 1:
raise
continue
Caching
- Cache common prompts
- Store expensive generations
- Use semantic similarity for retrieval
Cost Optimization
- Use smaller models when possible
- Limit max_tokens appropriately
- Batch requests when available
- Cache results
Common Patterns
Chain of Thought
def generate_with_reasoning(question):
prompt = f"""Question: {question}
Let's think step by step:
1. First, identify the key information
2. Then, reason through the problem
3. Finally, provide the answer
Answer:"""
return generate(prompt, temperature=0.3)
Few-Shot Learning
def generate_with_examples(task, examples, input):
prompt = f"Task: {task}\n\n"
for ex in examples:
prompt += f"Input: {ex['input']}\nOutput: {ex['output']}\n\n"
prompt += f"Input: {input}\nOutput:"
return generate(prompt, temperature=0.5)
Streaming Generation
For real-time output:
def generate_stream(prompt):
stream = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": prompt}],
stream=True
)
for chunk in stream:
if chunk.choices[0].delta.content:
yield chunk.choices[0].delta.content
Key Takeaways
- Generate functions are the interface to AI models
- Parameters control output characteristics
- Proper prompting is crucial for quality
- Consider cost, latency, and reliability
- Structure prompts for desired output format